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ABSTRACT

In a fault-tolerant parallel computer, a functional programming model can facilitate dis-

tributed checlq3ointing, error recovery, load balancing, and graceful degradation. Such a

model has been implemented on the Draper Fault Tolerant Parallel Processor (FTPP).

When used in conjunction with the FrPP's fault detection and masking capabilities, this

implementation results in a graceful degradation of system performance after faults. Three

gracefuL1degradation algorithms have been implemented and are presented. A user interface

has been implemented which requires minimal cognitive overhead by the application pro-

grammer, masking such complexities as the system's redundancy, distributed nature, vari-

able complement of processing resources, load balancing, fault occurrence and recovery.

This user interface is described and its use demonstrated. The applicability of the functional

programming style to the Activation FrameworL a paradigm for intelligent systems, is then

briefly described.

0. INTRODUCTION

Future autonomous and semi-autonomous applications such as the Space Station Ther-

mal Management System [NA86], the Adaptive Tactical Navigator [Jo85], and others will

require the use of "intelligent" or "knowledge-based" systems to execute real-time,

mission- or life-critical functions. In addition to high reliability requirements, it is predicted

that these functions will require computational throughput in excess of that achievable by

advanced uniprocessors, thus mandating the use of a parallel processing system.

In parallel computer architectures, there is a high likelihood that at any given time a part

of the system will exhibit faulty behavior. The ability to tolerate this behavior must be an

integral feature of such architectures and their programming models 1. For example, the

number of processors available in a parallel system at a given time varies as failures occur.

Programming models which cannot accommodate a variable number of processors require

a spare processor for each failure to be tolerated. After the spares are exhausted, additional

failures render the system unusable. A programming model which can accommodate a vari-

able number of processors during the execution of a computation allows graceful degrada-

tion of system performance as failures occur, while allowing use of the spares to increase

1A programming model is a paradigm which represents to a programmer the way in which
a computer will execute a program. Traditional uniprocessors use the Von Neumann model
of sequential program execution.
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system performance prior to failures. A system which degrades gracefully has an auto-

mated, orderly process for dealing with hardware failures as they occur. Such a process re-

sults in minimal disruption of an application program executing on the system while the

system responds to the failure.

To facilitate the discussion of graceful degradation, some nomenclature pertinent to the

topic needs to be introduced. The computational state of a program is a body of data which

must persist over an extended period of time during program execution. It performs the

same function that memory does for a human being, reminding the program of the condi-

tions under which it is operating. One way humans have of dealing with imperfect memo-

ties is to write down a copy of some information for future reference, to be used in case of

an incident of absent-mindedness. In a computer, the process of making a backup copy of

state information is called checkpointing. When something goes wrong with a program

during its execution, it may be possible to retry a computation, perhaps in another proces-

sor, by using the checkpointed state of the program, saved before the failure was detected.

The program is in effect "rolled back" to an earlier state. When programs are parallelized

and distributed over several computers, a rollback in one machine may trigger a rollback in

another, resulting in an undesirable domino rollback effect.

To degrade gracefully, a parallel system requires a means of checkpointing and back-

ward recovery which does not depend upon global coordination of checkpoint placement

[Ho83] and which will not result in domino rollback [Ku86]. Furthermore, optimal per-

formance requires maximum utilization of system resources, requiring in turn a means of

balancing the load across all the processors comprising the system. A primary problem in

implementing load balancing is the transport of large amounts of computational state. A

programming model which allows the concise representation of large amounts of computa-

tional work would facilitate the implementation of an efficient load balancing scheme. Load

balancing can also be used to facilitate failure recovery algorithms by evacuating work from

degraded processing sites, that is, redundant processing sites which because of failures

possess insufficient redundancy to support the application's required reliability.

Parallel algorithms can cause saturation of system resources because of excessive run-

time generation of parallelism [Tr87]. A solution requires a portion of the extant modules to

be aborted to free resources and allow the remaining extant modules to spawn the children

required for their completion. Subsequently the aborted modules can themselves be

restarted and can execute to completion. This is a form of rollback and also requires a form

of distributed checkpointing and recovery.
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A programming model and the operating system which supports it must facilitate devel-

opment of parallel algorithms, while masking the distributed and fault-tolerant nature of the

underlying system from the application programmer. Minimization of irrelevant cognitive

noise eases coding, testing, and validation.

The referential transparency inherent in afunct/ona/programming model holds promise

as a partial solution to these problems. Such a model has been implemented on the Charles

Stark Draper Laboratory (CSDL) Fault Tolerant Parallel Processor (FTPP). The FTPP

supports Byzantine Resilient processing sites each of which is capable of detecting and

masking faults with near-unity probability. When used in conjunction with the FTPP's

fault detection and masking capabilities, the functional programming style can facilitate dis-

tributed checkpointing, error recovery, load balancing, and graceful degradation.

Another programming paradigm which has been proposed for real-time, intelligent,

i.e., knowledge-based systems, is the Activation Framework [Gr85]. The activation

framework parallelizes an application as a set of communicating experts. Since each

"expert" possesses persistent state, this paradigm is not functional. Nevertheless, it is a

model intrinsically well-suited to the architecture of the FTPP, especially for knowledge-

based applications requiring high levels of reLiability. Implementing a system to support AF

constructs on the FTPP would provide an informative non-functional counterpart to the

functional programming model examined in this study.

This report begins with an overview of the FTPP architecture, followed by a descrip-

tion of the implementation of a Remote Procedure-based functional programming model on

the FTPP. A user interface has been implemented which requires minimal cognitive over-

head by the application programmer, masking such complexities as the system's redun-

dancy, distributed nature, variable complement of processing resources, load balancing,

fault occurrence, and recovery. This user interface is described and its use demonstrated.

Three graceful degradation algorithms are described and a preliminary evaluation is pro-

vided. The applicability of the functional programming style to the Activation Framework

intelligent system paradigm is then briefly described.

1. FAULT TOLERANT PARALLEL PROCESSOR OVERVIEW

The testbed for the implementation and evaluation of the functional model is the proto-

type Fault Tolerant Parallel Processor (FTPP), a high-reliability, high-throughput parallel

processor under development at CSDL. The FTPP achieves high throughput by using a
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multiplicity of loosely-coupled Processing Elements (PEs) which communicate via mes-

sage-passing over a shared communication medium. The FTPP achieves high reliability by

being capable of surviving a specified number of component failures with a probability ap-

proaching unity.

A conservative failure model is to consider failures as consisting of arbitrary or even

malicious behavior on the part of failed components. This type of fault, known as a Byzan-

tine fault, may include stopping and then restarting execution at a future time, sending

conflicting information to different destinations, and other types of malicious behavior.

While certainly not common, Byzantine failures cannot be ignored in the design of fault-tol-

erant computers for critical applications. For example, at least one inflight failure of a

triplex digital computer system was traced to a Byzantine fault and the lack of appropriate

architectural safeguards against such faults [LAB6]. In the Fault Tolerant Multil:h'ocessor

(FTMP), a failure caused one channel to send conflicting interpretations of faulty behavior

to other channels. The list goes on, and would be longer if other architectures were capable

of tolerating and logging Byzantine behavior. Because such failure modes clearly exist in

practice, an ultra-high reliability system must be able to tolerate them.

Among other requirements [Ha87], Byzantine Resilience requires that PEs be replicated

and synchronously execute functionally identical code on bitwise-identical inputs. Fault

masking and detection must be obtained via bitwise comparison of outputs from the redun-

dant processing group. In the FTPP, PEs are connected to special-purpose Network

Elements (NEs) which permit inter-PE communication both for fault tolerance-related pur-

poses (i.e., distribution of input data, voting of output data, and synchronization of redun-

dant groups) and inter-redundant group purposes (i.e., message passing in a parallelized

application). Figure 1 shows one possible arrangement of NEs and PEs into a 16-PE, 4-

NE "cluster". The NEs in the cluster are fully connected to each other via point-to-point

communication links, which also serve as physical fault isolation barriers. Inter-NE links

are used for interprocessor communication and synchronization, and are the only physical

connections between primary fault containment regions. Each NE also possesses a port to

each of its subscriber PEs. An NE and its associated PEs comprise a fault containment re-

gion. Consequently, a Byzantine Resilient Virtual Group (VG) must comprise at least three

PEs each subscribing to a unique NE. Figure 1 shows a mixed redundancy configuration

of the cluster. In this example, the PEs of the cluster are arranged into one quadruply re-

dundant virtual group (VG) Q1, one triply redundant VG T1, and nine simplex VGs S1

through $9. As an example of redundancy management policies possible
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Primary
Fault

Containment

Region

Processing
Elements

Network Element

Secondary
Fault

Containment

Region

\

Q1 Quad 1
T1 Triad 1

$1-$9 Simplexes 1-9

Figure 1. Fault Tolerant Parallel Processor Cluster

within this cluster, if a member of quad Q1 fails, then simplex S5 may be assigned to Q1 to

restore its redundancy, as shown in Figure 2. Alternatively, Q1 may be disbanded and its

former members used as spares in a graceful degradation scheme, or it may be designated

to be a triplex VG. Numerous other redundancy configurations and redundancy man-
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agement strategies are possible with this cluster. Algorithms required for reconfiguration

have been developed and demonstrated on the prototype cluster.

Primary
Fault

Containment

Region

Processing
Elements

I_ Network Element

Secondary
Fault

"4-"- Containment

Region

New Channel of Q1

Q1 Quad 1
T1 Triad 1

S1-$9 Simplexes 1-9
Fault in Old Channel of Q1

Figure 2. Repair of Quadruplex Virtual Group Q1

Because of limited NE execution speed and communication link bandwidth, all of the

PEs of a large ensemble cannot be efficiently supported by a single cluster. An FTPP en-

semble is therefore assembled from several clusters, as shown in Figure 3. The size of each
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clusteris optimized for the reliability and performance parameters of impol_nce in a given

application. Reliability and performance formulations have been developed which help de-

termine this optimum [Ha87]. Given clusters of such an optimal size, specialized

Input/Output Elements flOEs) are used for their interconnection. One IOE subscribes to

each NE and its sole function is inter-cluster communication. Fault-masking intercluster

communication is achieved by the use of redundant intercluster links connected between the

IOEs of different clusters.

Cluster 1

ba

b |

IOE

g

d

d

d
Cluster 2

C

d

Cluster 3

Figure 3. FTPP Composed of Three Clusters

Regardless of the redundancy level of the VG complement, the FTPP's fault tolerance

is transparent to the applications programmer. The FTPP is programmed as a non-redun-
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dant parallel processor which is extremely reliable. To assist in this, Byzantine Resilient

inter-VG communication protocolshave been developed which guaranteethatmessages are

deliveredinthe order sent,and thatmessages sentto one or more VGs arereceived in the

same order everywhere. When the number of simultaneouslyactivefailuresdoes not ex-

ceed thedesign limit,such guaranteesobviateconsiderationof uncontrollablyfaultycom-

ponent behavior by thedesignersofdistributedapplications.

A 16-PE prototype FTPP cluster is in an advanced stage of integration at the Draper

Laboratory. The cluster includes the PEs, the NEs, the operating system, reconfiguration

functions, the functional programming model developed under this Task, and several

demonstration applications. Currently, evaluation and optimization of the performance of

this prototype is underway. A second 32-PE cluster is in the planning stages. Further in-

formation on the FTPP is available in [Ha87], [Ha88] and [Ab88].

2. FUNCTIONAL PROGRAMMING

2.1 OVERVIEW

A functional programming model has been shown to provide benefits for both system

reliability ILl86] and for system performance in parallel processing architectures [Fa85],

[Ve84]. A functional programming model structures a computation into the evaluation of its

constituent functions. The result of a given evaluation is uniquely determined by the argu-

ments given the function. The only information exchange between the function and its

caller are the initial passing of parameters and the return of the result. This property of

"determinism" or "referential transparency" has been proposed to simplify error recovery in

fault-tolerant systems [Li86], [Ja86].

Because of referential transparency the result produced by any function is insensitive to

the processor on which it is executed in the absence of failures. As the system degrades due

to failures, function instantiations can be redirected to nonfaulty processors with a com-

mensurate reduction in ensemble throughput. The functional programming model thereby

allows graceful degradation by being relatively insensitive to the number of available pro-

cessors in the ensemble, assuming faults can be detected and survived.

The concise representation of a function by its name, input arguments, and caller's

name allows migration of functions to other processors without the need to transfer mas-

sive amounts of state information. Load balancing to maximize utilization of system re-

sources can thus be provided without substantial penalty.
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Function invocation constitutes a natural rollback point. Rollback can be the result of

the failure of a processor, or the unwinding of a calling tree in a deadlock-recovery algo-

rithm. The function to be computed, its arguments, and the destination of the function's re-

sult are all the information necessary to restart the function, and they can be saved by the

function's caller at low cost. If rollback is necessary, the function can be restarted on any

processor by transferring the appropriate information to that processor. Because of referen-

tial transparency, the result of the restarted computations is identical to that of the original

computation, merely delayed in time.

Functional programs are typically computationally intensive and written at a high level

of abstraction [Ve84]. It is undesirable to complicate the programming problem with details

of distributed system operation such as the mapping of functions onto physical processing

sites or arranging for the transfer of arguments from parent to child. Furthermore, the dy-

namic nature of a fault-tolerant system as it responds to failures should be transparent to

applications. An appropriately low level of cognitive overhead can be provided which al-

lows a programmer to work with functional abstractions and which hides the details of the

underlying hardware and system operation.

2.2 THE REMOTE PROCEDURE MODEL

An operating system which supports parallel execution of applicative functional pro-

grams and provides transparent fault detection, fault masking and error recovery with near

unity probability has been implemented on the FTPP. The functional abstraction used by

the application programmer is that of a functional Remote Procedure (RP). Unlike func-

tional programming languages which force the programmer to adhere to the requirements of

referential transparency, the RP is an atomic unit of computation which can be coded in any

standard programming language, assuming the RP is free of side effects outside its own

variable scoping. C and Ada have been used in demonstration programs. Although the re-

suits of a given RP depend only on its arguments, it may have internal state and may access

a shared static environment. RPs call other RPs in much the same way that a function calls

another function. However, the caller is not suspended or blocked while waiting for the

called function to complete. The called function may proceed in parallel with the caller as

well as any other function in the system. A given RP may invoke a number of children and

then await the completion of none, one, some, or all of its children before returning to its

parent. As the program executes, the computation tree expands and contracts as necessary

as functions recursively create children and consume their computational results.
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Within the FTPP, RPs are balanced evenly among the non-faulty VGs for maximal re-

source utilization by a distributed system process called the RP Manager, whose operation

is described below. The RP Manager transfers the argument and response between the VGs

on which the parent and child are instantiated. However, the programmer is not concerned

with which VG executes an PP. His conceptualization of his program is that of a directed

computation tree, beginning with a main RP, called the "root RP", and expanding and con-

tracting as necessary to execute his parallelized algorithm, as if each RP will execute on a

different processor.

At the lowest level, an RP executes as an imperative task on a VG within the FTPP. A

parallel program may consist of one or many different RPs of which many instantiations

may exist at a given time. Because of the large memory size of the F'_P's processing ele-

ments, the code for all RPs can be resident on all VGs in the system. Load balancing there-

fore involves only the transfer of data. The code for the various RPs is installed on the

system by normal compiling, linking, and downloading operations. While members of a

given VG must execute identical load modules for fault tolerance reasons, it is possible to

install different versions of code on different VGs to minimize memory utilization. This has

not yet been necessary. If heterogeneous load modules become necessary, our current

scheme allows load balancing only to a VG which possesses the appropriate code for the

RP being migrated. Another possibility is to develop a scheme to move code from one VG

to another.

2.3 THE USER INTERFACE TO THE RP MODEL

Remote Procedures are created and controlled by the programmer using several calls

(Figure 4). RPs have dual personalities; they operate both as parents and as children. The

system calls therefore form two distinct groups. Five calls are provided for the use of chil-

dren. When an RP begins to execute, it calls rp myargs ( ) to obtain a pointer to its ar-

guments. Rp_myr sp ( ) returns a pointer to memory in which the RP is to write its return

value upon completion. If the RP has no further use for its arguments and wishes to return

the memory allocated for their use to the system, it can do so by calling rp relargs ().

When the RP is completed and the return value has been written to the designated response

area, the RP calls rp_cmpltd (). The response is then returned to the parent and the child

is terminated. Some of the calls explicitly deschedule the calling RP. One such call is

rp_su sp (). It causes the calling RP to be suspended, explicitly returning control to the
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system. The RP will be not be resumed until the next scheduled iteration of the RP

Manager.

The remaining calls are provided for the use of RPs operating as parents. To invoke a

child, the parent calls rp_create ( ) with the identifier of the RP it wishes to start. When

resources do not permit the creation of this child, an error is returned. Otherwise, the call

returns a receipt to the parent containing a system-wide unique identifier for this child. The

parent uses this receipt to query the system for information about this child or to otherwise

control the activities of the child. The parent informs the RP Manager that the arguments for

a given child have been initialized by calling rp_start (). If the RP Manager returns an

error condition from the child's execution, the parent may restart the child by calling

rp start () again. If the parent no longer has a need for the result to be returned by a

given child or if it wishes to free up resources to allow the creation of other children, it calls

rp release ( ) iwith the receipt of the child it intends to terminate. If it wants to terminate

all of its children, it calls rp_flush (). Rp_next ( ) and rp_nextb ( ) return informa-

tion to a parent about the status of its children. Rp next ( ) returns the receipt of the oldest

child which has completed but whose result has not been read. If no child is completed, it

returns an indication that no child has returned its result yet. Rp_nextb ( ) suspends the

parent until the next child returns. When called with the receipt of a child, rp_read ( ) re-

turns a pointer to a result ff the child has completed; otherwise it returns a null pointer.

Rp_reacLb ( ) blocks the parent until the specified child has returned its result.

System Calls Used by RPs when
Operating as a Parent

rp_create ( )

rp_start ()

rp_release ()

rp_flush ()

rp_next ()

rp_nextb ()

rp_read ()

rp readb ()

System Calls Used by RPs when

Operating as a Child
rp__myargs ( )

rp_myrsp ()

rp_relargs ()

rp_complt d ()

rp_susp ()

Figure 4. Remote Procedure System Calls

The use of these system calls is illustrated by the following example. The most expen-

sive portion of AI programs is usually some type of search [Ki85]. While many searches

are conducted over an inherently parallel domain, A* searches, which attempt to find the
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least costly route through some problem space, have been most successfully parallelized on

shared-memory architectures. A* search algorithms which are designed for architectures

similar to that of the FTPP, i.e. which have distributed memory and processors which

communicate via message passing, have not in general produced significant performance

gains ['Ku88]. Frequently, however, applications can tolerate a less-than-optimal solution.

In fact, some time-sensitive applications require only the best solution which can be arrived

at in a given amount of time. In these cases, it is often possible to trade quality of solution

for speed of computation. Speed is increased in A* searches by limiting the number of

nodes which are expanded as the search progresses. Decisions about node expansion are

based on a cost function, which includes a heuristic component which can be made artifi-

cially high by imposing some external constraint [Pc84].

The RP model can be used to advantage in thesesituationsby allowing many searches

with differentheuristicsto proceed untilthe time constraintisreached, choosing the best

solutionfrom those which have complctcd, and killingany uncompleted searches.Figure

5a shows the rootRP of thiscomputation.Itspawns a setof children,each of which con-

ducts an A* searchusing a differentconstrainttogeneratethevalue of theheuristicevalua-

tionfunction.As childrencomplete, the solutionsthey returnare added to a listwhich is

sortedby the costof the solution.Children arc createdwith callsto rp_create () and

rp_start ().By callingrp_next (),the rootRP obtainstheRP identifierof the oldest

childto complete. Ifnone have completed, itsuspends itself,awaiting resumption by the

RP Manager. At thatpointitreadstheresultof the completed child,insertsitatthe correct

place inthe sortedlistof completed children,and decideswhether itcan waitforany more

outstandingchildrentocomplete.Ifnot,ituses thebestresultso farand killsallrcmaining

childrenby callingrp_k iiI ().

Figure 5b shows the child RP as it obtains its arguments by calling rp_myargs (),

conducts its search, gets memory space in which to write its results by calling

rp._myrsp ( ), and returns its result to the parent by calling rp_cmpltd ().

While these calls require the application programmer's awareness of the parallel nature

of the program, they hide the system's hardware redundancy, failure behavior and recov-

ery, mapping of RP executions to processors, and load balancing.
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=oot_rp ()

/* Variable Declarations */

extern func id struct *astar search;

struct solution_struct solutions[hum_kids], *solutlon,

best solution;

struct arg_struct *arg;

int start_time, rp_id, arg_addr;

start_time = sys_time();

/* Create and start children */

for(num__kids - 0; num_kids < max_num__kids; num_.kids++)
{
/* Obtain RP ID and space for arguments. */

if(! (rp_create(astar_search, &arg_addr, &rp_id) )
break;

else

{
/* Initialize the arguments. */

arg = (struct arg_struct *) arg_addr;

init A* nodes(arg);

arg->constraint = max_constraint - (num_kids * delta);

}
}
/*

/* Start child to conduct search. */

rp_start(rp_id);

Read solutions as they arrive until real-time constraint

is reached. Suspend if no children have completed.

./
while( (sys_time() - start_time < timeout) && num_kids >= 0)

{

if (rp_naxt (&rp_id) )
{
solution w (struct solution_struct *) rp_read(rp_id);
sort solutions (solution, solutions) ;

num kids--;

}
else rp_susp () ;

}
/,

When real-time constraint arrives, flush all extant

children and select best solution.

*/
if (num kids k 0)

rp_flush () ;
best solution = least cost solution(solutions);

Figure 5a. Root RP used to obtain the best solution to an A* search given a real-time con-
straint.
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astar search()

{

/* Variable Declarations */

struct arg_struct *arg;

struct solution struct *solution;

/* Obtain Arguments */

arg = (struct arg_struct *) rp_myargs();

/* Obtain memory to hold solution */

solution - (struct solution struct *) zp_myzsp () ;

/* Conduct A* search */

astar (& arg->st art_node,
solution) ;

&arg->end_node, arg->constraint,

/* Return result to parent and terminate. */

rp_cmpltd () ;

_igure 5b. RP used to conduct an A* search given a constraint which produces a less than

optimal solution based on a heuristic evaluation function.

2.4 FTPP OPERATING SYSTEM

The FTPP's Operating System (FTPPOS) comprises a non-preemptive multitasking

scheduler and a set of system services which include Fault Detection, Identification, and

Reconfiguration (FDIR) and RP management. FDIR is a process which detects an error in

the system, identifies the faulty component and reconfigures the system to expunge the

faulty component. FDIR is also responsible for notifying the RP management software that

a VG is degraded and must be evacuated of computational load. The RP Manager is com-

posed of four major functions: scheduling of RPs, supporting the user interface, deadlock

detection and recovery, and supporting system reconfiguration to effect graceful degrada-

tion.

2.5 IMPLEMENTATION DETAILS OF THE RP MANAGER OPERATION

2.5.1 RP MANAGER AS A DISTRIBUTED PROCESS

The RP Manager is a distributed process which controls the scheduling and execution

of RPs generated by the user's computation. An instance of the RP Manager is resident on

every VG in the system. Each instance communicates with its peers by means of message

passing. They cooperate to handle the calls described in §2.3, schedule RP execution, dis-

tribute the RP load evenly among the VGs, detect and resolve deadlock, and respond to

FDIR reconfiguration directives by transferring RPs from degraded VGs to healthy ones.
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2.5.2 DATA STRUCTURES USED BY THE RP MANAGER

The RP Manager uses several data structures to support its operation. One structure, an

instance of which is resident on each VG, contains a system-wide unique set of reusable

RP identifiers. The structures which support scheduling and load balancing are the pending

list and the execution list. The reciprocity between entries in the pending and execution lists

is shown in Figure 6. The latter is further partitioned into a ready queue, a balance queue,

and a suspend queue.

2.5.2.1 RP IDENTIFIERS

To ensure that time delays associated with RP responses do not cause messages latent

in the system to arrive unexpectedly and be confused with expected messages from other

RPs, each RP is assigned a system-wide unique identifier at the time it is invoked. The RP

identifier is considered a finite resource and presently each VG can generate 128 unique

identifiers 2. At system startup, the RP identifiers on a VG ate linked into a list of free iden-

tifiers. As RP invocations are accepted, identifiers ate removed from the list. When RPs

complete, their identifiers are returned to the free list. When the free list is empty,

rp_create ( ) calls are denied. The RP identifier is also used as an index into the VG's

pending list, pointing to the entry for that RP. When it is instantiated, i.e. scheduled for ex-

ecution, each RP is given a second system-wide unique identifier, called the instant identifi-

er. This identifier is similar to that of the RP identifier, except that it functions as an index

of its entry in the execution list of the host VG.

2.5.2.2 THE PENDING LIST

Each VG hosts a pending list of all the children whose parents are instantiated on that

VG. Eacfi entry contains sufficient information to terminate or restart the child, and is one

side of the link between patent and child in the system. As an RP fulfills its destiny, vari-

ous fields in the pending list entry are updated.

2.5.2.3 THE EXECUTION LIST

The other half of the parent-child link is the execution list entry resident on the VG

which actually instantiates the child RP. The execution list is a record of the RP requests

received by the RP Manager on a given VG. The first such request is made with a parent's

2This is an arbitrary constraint made for system programming convenience and can be
easily altered.
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Figure 6. Pending and Execution Lists

call to rp_start ( ). The entries in the execution list are divided into three prioritized

queues: the balance queue, the ready queue, and the suspend queue.

The balance queue contains RPs which have not yet been instantiated on a VG. They

have not been allocated memory for arguments and responses, and they have not been

started. These RPs can be transferred to another VG with very little communication over-

head, and their presence on the balance queue implies that they are candidates for load bal-

ancing. Once an RP is instantiated, it acquires state and the transfer of this state information

is much more costly. In the present system a "pseudo-transfer" of instantiated RPs has

been implemented to support one the the graceful degradation algorithms (see Section 3).

However, RPs transferred to balance load are uninstantiated.

When the RP Manager processes a call to rp_start (), it allocates an execution list

entry for the designated RP and places the RP on the balance queue. The balance queue is

prioritized by generation. If the load balancing logic within the RP Manager decides to

transfer an RP in its balance queue to another VG, it removes the RP from its execution

list. The RP Manager on the receiving end of the transaction places the transferred RP on

the balance queue of its own execution list.
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The suspend queue contains RPs which have been instantiated but have suspended

themselves or have been suspended by the RP Manager pending the occurrence of some

event such as child completion. Once the awaited event has occurred, the RP is transferred

to the ready queue.

The ready queue contains RPs which can be run but have been implicitly suspended by

virtue of making a system call. In this way, all RPs are given fair access to processing time

on their VGs. The ready queue is sorted by the generation of the RPs in the queue. RPs

with a higher generation number, i.e. younger RPs, are at the head of the queue and there-

fore will execute before older RPs. This priofitization is based on the assumption that in

most cases children must complete before their parents can complete.

2.5.2.4 MEMORY ALLOCATION STRUCTURES AND ALGORITHMS

Memory for arguments and responses is allocated in fixed size blocks. More sophisti-

cated schemes exist which use memory more efficiently while paying a performance

penalty for this conservation, and this could form a topic for future development. All of the

free memory in the system is used for RP arguments and responses. A linear equation is

solved which determines the maximum number of RPs which can be instantiated on each

VG based on the known argument/response size and the memory requirements of other

FTPPOS processes.

2.5.3 LOAD BALANCING

The work load of a VG is defined as the set of RPs in its execution list. Parallel compu-

tation is achieved by distributing these RPs evenly among the non-failed VGs in the FTPP.

In our implementation, load balancing also supports fault tolerance strategies for graceful

degradation and for deadlock detection and recovery.

Load balancing requires a certain amount of overhead. Since a primary objective of in-

ducing parallelism is to improve performance, a load balancing algorithm has been devised

which minimizes this overhead while remaining responsive to changing system state. Mi-

gratable RPs have not yet begun to execute and reside on a balance queue. Thus, only ar-

guments and responses need to be transferred to run a child RP on a VG remote from its

parent. When an RP is balanced away, it is chosen from the head of the balance queue, i.e.

an "older" RP is chosen. This results in rapid distribution of a significant amount of work

since older RPs have the potential to have more descendants than younger RPs. RPs may
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betransferredseveraltimesbeforebeinginstantiated;hence, arguments are transferred only

after the RP has been instantiated by a host VG.

To further reduce the overhead associated with load distribution, the load balancing al-

gorithm is designed to require a minimum of communication among the RP Managers in

the FFPP. Whenever a change in its local load has occurred, the RP Manager broadcasts a

message containing the number of RPs in its balance and ready queues. Other RP

Managers use these messages to update their view of the load in the system. This locally

maintained data is the basis for making RP transfer decisions. RPs are transferred only

when the local load is greater than the system average and then only to a VG whose load is

below that of the system average. This algorithm provides the system with some hystere-

sis, which stabilizes the system by reducing overshoot and oscillation. This simple algo-

rithm results in a very short amount of processing time spent in executing load balancing

logic. Furthermore, once the decision is made to transfer an RP, no further handshaking is

required. The RP Manager sends an imperative "transfer load" message to its counterpart

on a remote VG, who adds this RP to its balance queue ff it has a free entry in its execution

list. Otherwise, the recipient immediately sends the RP to another VG and begins checking

for deadlock.

To support kill and graceful degradation algorithms, the VG accepting the RP sends an

acknowledgement to the VG which is hosting the RP's parent. This maintains the link be-

tween the parent and the child RPs.

Load balancing is an integral part of graceful degradation and deadlock recovery. When

the redundancy of a triplex or quadruplex VG is reduced due to a failure, it can still safely

participate in error recovery strategies if those strategies can effect reconfiguration quickly

enough to keep the probability of a second failure during reconfiguration sufficiently low.

Graceful degradation exploits this fact. For deadlock recovery, all RPs in the balance

queues can bc immediately terminated,thusfreeingup resourcesforthebranch of thecom-

putationwhich istobe allowed toadvance toitsleaves(Scc [Tr87]).

2.$.4 LOCAL RP INSTANTIATION AND SCHEDULING

To insmntiate an RP, the RP Manager obtains memory for its arguments and responses

and creates a task to execute the RP. The RP chosen for local instantiation is taken from the

tail of the balance queue. This is part of a deadlock avoidance strategy; since it is possible

that parents are waiting for their children to complete, preferentially instantiating "younger"

RPs for execution promotes earlier completion of the computation.
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2.5.5 RP KILL PROTOCOL

Several situations arise in which RPs must be terminated. For example, a parent may

no longer require the result of a child, as in the A* example. Children are also terminated to

prune a branch during deadlock recovery. Finally, one means of graceful degradation is

simply to kill all descendants of RPs executing on a degraded VG. A desirable characteris-

tic of a kill protocol is speed of execution to prevent RPs that are to be killed from spawn-

ing further RPs which must in turn be killed recursively. In our implementation the kill

protocolisinitiatedthrough thecallsrp_release () and rp_flush ().An RP iskilled

by removing it from the execution and pending lists. The entries are restored to their re-

spective free lists and any memory allocated for the use of the terminated RP is deallocated.

If a task has been started for this RP, it is stopped.

The kill protocol originates with the RP Manager on the VG hosting the parent RP. If

the target RP is on the local execution list, the actions described above are simply carried

out, and the kill is complete. However, if the RP has been transferred to a remote VG, the

status field of the target's pending list entry is marked KILL and a kill message is sent to

the RP Manager of the VG which sent the most recent transfer acknowledgement to the

parent. Should a transfer acknowledgement arrive for an RP which has a pending entry

status of KILL, implying another transfer of the target RP, a kill message is forwarded to

that VG. When the kill message is received, the children of the target are flushed, thereby

propagating the kill, the target RP is removed from the execution list, and memory and task

deaUocations are made. If the target RP is no longer present on this VG, the kill message is

ignored. Finally, a kill acknowledgement is returned to the RP Manager issuing the kill re-

quest. When a kill acknowledgement message arrives at the parent's VG, the pending entry

and associated RP identifier are released by the RP Manager. If child responses are re-

turned for an RP with a pending entry status of KILL, they are discarded.

3. GRACEFUL DEGRADATION ALGORITHMS

One of the primary purposes of the functional programming model is to facilitate Grace-

ful Degradation (GD) strategies. GD is responsible for halting the RPs on a Degraded Vir-

tual Group (DVG) and reestablishing them on reliable VGs. Generally desirable features of

any GD algorithm are fast execution time and minimal use of system resources during exe-

cution. On a system consisting of reconfigurable redundant groups such as the FTPP, GD

execution time has a direct impact on system reliability. Since it is the occurrence of a fault
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in the VG that triggers GD, quick action is required before a second fault can occur in that

DVG, defeat the voting in a triplex or quadruplex VG, and possibly cause system failure.

GD activity is triggered by a message from an FDI task running either locally or on an-

other VG. The message indicates that a particular VG has suffered a permanent fault and

must evacuate its load. This Degraded Virtual Group receives this message and, because it

can continue to function temporarily in the presence of a single fault 3, initiates the GD al-

gorithm. After completion of GD, the RP Manager signals FDI that the DVG is idle and

available for repair or dispersal. Three different GD algorithms were developed and im-

plemented in order to compare their performance under various workloads. These algo-

rithms are discussed in the following three sections.

3.1 "RUN TO COMPLETION"

In the simplest GD algorithm, the DVG immediately sets its load to its maximum value

when it receives a "degrade" message from F'DI. This results in the rapid offloading of all

migratableRPs, while blocking the arrivalof additionalRPs from other VGs. The DVG

then executes locally instantiated RPs as usual, except that all locally spawned children are

immediately balanced away. GD is complete when all locally instantiated RPs complete.

This algorithm does not result in the quickest completion of GD, but is useful as a bench-

mark for other designs. The other two GD algorithms developed reduce the time deficiency

in differentways.

3.2 KILL AND RESTART

The fastestGD algorithnadeveloped to date exploitstheKilland Restartcapabilitiesof

the functionalmodel. This algorithmis"fastest"in the sense thatitcompletes GD in the

shortestamount of time.Upon receiptof a "degrade" message, the DVG initiatesa kill

protocolon alllocallyinstantiatedRPs. In addition,foreach of theseRPs killed,a "restart"

message issent to itsparent (unlessthc parentison the DVG). Parentsreceivingrestart

messages attempt to re-spawn the child.After alllocallyinstantiatcdRPs arc killed,any

RPs on thebalancequeue aretransferredtoreliableVGs.

Although Kill and Restart is the fastest of the three algorithms, as measured by the

work performed by the RP Manager to effect the graceful degradation phase of the fault re-

covery process, it wastes systems resources. Killing several branches of a computation tree

3This discussion assumes that VGs are of triplex redundancy or greater.
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in this manner can be extremely inefficient, especially ff the DVG contains RPs near the

root of the tree. If the DVG hosts the root of the computation tree, not only is the whole

tree killed, but difficulty may arise in restarting it. Thus, while the system may roU back to

a stable configuration quickly, the application program may suffer a severe performance

penalty in terms of the time it takes to complete a computation. These difficulties inspired

the development of our third GD algorithm, which saves all computation in progress on the

DVG.

3.3 COMPUTATION SAVING GRACEFUL DEGRADATION

Computation Saving Graceful Degradation (CSGD) conserves system resources over

other GD algorithms by moving each instantiated RP to a reliable VG, relinking the RP

with its parent and children, and restarting iL We have chosen this algorithm for study over

other designs which save previous computation (such as grandparent splicing 4 [Li86]) for

several reasons. Because our system supports dynamic load balancing, it is difficult to

determine appropriate length time.outs for RP responses to messages. In addition, since GD

is expected to be infrequent, it is inefficient for RP Managers on nonfaulty VGs to have to

account for DVGs. Requiring such accounting would reduce the modularity of the system

implementation as well.

CSGD suspends scheduling of RPs on all VGs in the system upon reception of the

"degrade" message. The message ordering properties of the FTPP ensure that all RP Man-

agers perceive identical ordering of the "degrade" message with respect to normal RP mes-

sage traffic, and therefore take mutually consistent actions. This "freeze" allows the RP

Manager of the DVG to obtain consistent load information from each VG and to execute

without having to consider normal RP message traffic. It also allows all RP Managers to

devote their full attention to GD, thereby decreasing execution time.

CSGD then begins the RP transfer and relink portion of GD. Transfer begins with the

oldest instantiated RP on the DVG. The reason for choosing the oldest instantiated VG is to

ensure that an RP whose parent was on the DVG has its parent's new location after the par-

ent has moved. The specific function name and generation number of the RP are sent to an

appropriate VG. Upon receipt of this information, that VG's RP Manager creates an execu-

4 Upon processor failure an applicative tree may be partitioned into several pieces. When a
parent discovers the failure of a child task, the parent generates a twin of the faulty child
which inherits all offspring of the faulty task. The necessary linkages from the children to
the parent of the faulty task are maintained via their grandfather pointers, which point from
each task to its ancestor in the grandfather processor.
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tion list entry for the RP, sends the RP's new execution list entry identifier to the RP's

pending list entry on its parent's virtual group, and waits for [he pending list information of

the moved RP's children. This pending list information is sent by the DVG and consists of

the execution list entry identifier of the child and the response of the child (if it has com-

pleted). Children of a transferred RP receive notification of its new host VG when their

new pending list entries are created there.

After all instantiated RPs are moved to new locations and restarted, the RPs on the

DVG's balance queue are transferred to reliable VGs. The "freeze '°on RP execution is re-

moved and RP Manager execution is resumed. However, after an RP transferred during

CSGD restarts, any rp_create ( ) and rp_start ( ) calls that it performs are ignored

until it has attempted to recreate all the children it created on the DVG prior to CSGD.

These children have been created already and are running normally elsewhere so it links up

with them instead of creating new ones. After all these repeated creations have been at-

tempted by the transferred RP, normal creation of children is enabled. We chose the restart

method of restoring a _ansferred RP's state rather than one which freezes and transfers the

RP's entire state as it existed at the time of CSGD, because our method decreases thc size

of the GD messages and reduces the algorithm's complexity. After all RPs originating on

the DVG have restarted and are able to create new children, CSGD has completed.

Of the three designs which were implemented and evaluated, our initial experience indi-

cates that Computation Saving Graceful Degradation has the most desirable characteristics.

CSGD completes quickly while saving previous computation, keeps message size to a

minimum, and preserves modularity. However, more conclusive results will require com-

parative evaluation in the context of a given application.

4. APPLICABILITY OF THE FUNCTIONAL PROGRAMMING MODEL TO
THE ACTIVATION FRAMEWORK INTELLIGENT SYSTEM PARADIGM

The Activation Framework (AF) knowledge-based system paradigm has been proposed

forreal-time intelligent systems [Gr85]. Under the current contract a small effort was au-

thorized to evaluate the mutual compatibility of the AF paradigm and the functional pro-

gramming model describedabove.

An applicationinAF consistsof a network ofcommunicating experts,each of which is

calledan Activation Framework Object (AFO). Multiple AFO networks may residein a

processing system.Discussion of generationof the AFO networks isbeyond thc scope of

thisoverview. AFOs possess statewhich persistsover the lifetimeof the computation.
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AFOs communicate via message-passing; reception of a message by a destination AFO ac-

tivates a computation by that AFO, during which it may transmit one or more messages to

other AFOs, change its persistent state, suspend its execution, and perform other object-

based functions. Messages are ASCII strings, and are addressed to a given destination

AFO by a system-wide unique "AFO name." Parallelism is achieved in the AF paradigm by

allowing many AFOs to execute simultaneously in a distributed or parallel environment.

lVlapping of AFOs to processors in a distributed system is implemented via a look-up func-

tion from AFO name to destination processor and task identifier. Currently, this mapping is

static and determined at initiation of the confutation.

The functional programming model makes radically different assumptions about the

structure of the computation. As an example, we compare the fundamental unit of paraUel

activity in our functional programming model, the Remote Procedure (RP), to its counter-

part in AF, the Activation Frame Object (AFO). The RP has no mutable persistent state, the

computation it performs being fully described by its input arguments and the destination of

the resulL It may not send any messages to another RP other than the computational result

message to its parent, or generation and parallelism control messages to its children. Its

only side effect is the generation of a computational result which it returns to its parent; it

cannot change any other global state. The AFO, on the other hand, is by definition a long-

lived object possessing mutable persistent state. The computation it performs at a given

time is a function of its entire input message history, its initial condition, and, conse-

quently, its internal state. It may at any time transmit messages to any destination AFO of

which it knows the AFO name, and it can change the computation's global state, of which

itsintemalstateisa part.

From our evaluations it appears that the RP model is appropriate for applications which

are highly structured (although not necessarily of predetermined size and intensity), regu-

lar, and algorithrnically intensive. The A* and other regular search algorithms appear to be

archetypes of this class of computation. The AF model appears to be more appropriate for

applications where much of the knowledge is heuristic, non-algorithmic, and occasionaUy

inconsistent, the system must maintain an ongoing estimate of the global state of the com-

putation, heterogeneous parallel modules must coexist, and rapid changes of computational

focus must be supported. It would also probably be easier to capture the knowledge into an

AF-type system than an RP-type system because the former does not constrain the pro-

grammer to algorithmically capture the whole of the computation; instead the programmer

may specify a piece of it at a time without worrying whether it is even consistent with the
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remainderof theapplication'sknowledge.Consequently it is possible to conclude that, at a

superficial level, the AF and RP models are incompatible. However, in our opinion there

may be mutually synergistic concepts.

For example, the AF model presumes that AFOs are load balanced. Static load hal-

aneers have been developed based on estimated AFO computational requirements and inter-

AFO message density. However, ff these estimates turn out to be inaccurate in practice, or

ff faults necessitate evacuation of the AFOs resident on a degraded VG, then a dynamic

load balancing technique similar to that developed under this task may be required.

As another example, the AF concept appears to implicitly assume that the execution of a

given AFO is inherently serial5. This may not necessarily be the case, and in fact may lead

to less-than-optimal speedup. For example, the Event Diagnosis module of the Advanced

Tactical Navigator is expected to require about six AFOs. If there are roughly five other

modules in the ATN application and their AFO suite is of commensurate cardinality, then

the total number of ATN AFOs is roughly thirty six, which could at best keep thirty six

processors busy 6. Although it can be argued that in this case one could augment the func-

tionality assigned to the parallel processor, it is reasonable to inquire whether greater

speedup would be obtained if AFOs themselves can be parallelized, and whether a RP-

based scheme would be appropriate for internal AFO execution.

The functional programming model can benefit from AF concepts as well. One of the

drawbacks of the current functional programming moders implementation is that the pro-

grammer must manually create and control the parallel execution of the RPs. If a way could

be found to automatically convert appropriately structured EFGs into applicative functional

trees, this problem would be alleviated. It would appear that the code generator being de-

veloped under the Knowledge Representations into Ada Methodologies (KRAM) program

could be augmented to optionally generate RP trees when the EFG is of an appropriate

structure, which could execute internal to one or more AFOs or in parallel with an AFO

network. This approach could expand the applicability of the "toolkit" approach being de-

veloped under KRAM to another class of parallel computation.

5If an Evidence Flow Graph (EFG) is "compiled" with a given number of processors in
mind, the number of AFOs generated could be a funcuon of the number of processors in
the target machine. Alternatively, the EFG could be used to identify parallelism internal to
an AFO.

6If the application generates a small number of AFOs, each one must be very computation-
ally intensive with respect to time spent sending messages, otherwise quite low processor
utilizations will result.
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5. CONCLUSIONS

A functional Remote Procedure-based programming model has been designed and im-

plemented on the Draper Fault Tolerant Parallel Processor. This model presents a simple

and powerful interface to the application programmer, facilitating creation and control of

parallel algorithms while masking the distributed, fault-tolerant, and highly reconfigurable

nature of the FTPP architecture. Our initial experience in programming simple applications

has borne this out. In addition, the model has facmtated the development of load balancing,

graceful degradation, and deadlock recovery algorithms. The fast two of these algorithms

have been implemented and successfully demonstrated.

In this sense the functional programming model has lived up to its expectations. How-

ever, programmers we have talked to are unsure whether they would be able to adequately

express their applications in a side effect-free applicative tree of functional RPs. We are

therefore of the opinion that, regardless of its desirable fault tolerance-related features, for a

programming model such as the one we have developed to come into widespread use, a

software development methodology such as that being developed under the Knowledge

Representations into Aria Methodologies (KRAM) program is needed. Such an approach

would allow the application programmer to express the algorithm or knowledge in a form

which is convenient to use (e.g., production rules), semantically congruent to the applica-

tion itself, and validatable at some level of instantiation, followed by a more or less auto-

matic conversion from the high-level representation to the implementation language. Even

more attractive would be the capability to appropriately mix functional and object-oriented

programming models within an integrated application development environment.

-25-



6. REFERENCES

[Ab88] Abler, T. A., "A Network Element-Based Fault Tolerant Processor," S. M.

Thesis, Massachusetts Institute of Technology, June 1988.

[Fa85] Fasel, J. H., Douglass, R. J., Michelsen, R., and Hudak, P., "A Distributed
Implementation of Functional Program Evaluation," Los Alamos National

Laboratory, New Mexico, Department of Energy Contractor Report
DE85009573, 1985.

[C,r85] Green, P. E., 'The Activation Frame Method for Real-Time Expert Systems,"
Technical Report EE85PG04, Department of Electrical Engineering, Worcester
Polytechnic Institute, Worcester, MA, October 12, 1985.

[I-Ia87] Harper, R. E., "Critical Issues in Ultra-Reliable Parallel Processing," PhD The-
sis, Massachusetts Institute of Technology, Cambridge, MA, June 1987.

[Ho83] Hosseini, S. H., Kuhl, J. G., and Reddy, S. M., "An Integrated Approach to
Error Recovery in Distributed Computing Systems," Proceedings of the 13th
International Symposium on Fault-Tolerant Computing, June 1983, pp. 56-63.

[Ja86] Jagannathan, R., Ashcroft, E. A., "Fault Tolerant Aspects of the Eduction
Model and Architecture," Proceedings of the IEEE/AIAA 7th Digital Avionics
Systems Conference, pp. 515-22, 1986.

[Jo85] Jones, H. L., Pisano, A. L., "Adaptive Tactical Navigation," Report No.
AFWAL-TR-851015, The Analytical Sciences Corporation, Reading, MA,
April 1985.

[Ki85] Kilber, D .F., and Conery, J., "Parallelism in AI Programs," Ninth Interna-
n'onal Joint Conference on Artificial Intelligence, August 1985.

[Ku86] Kuhl, J. G., Reddy, S. M., "Fault Tolerance Considerations in Large, Multi-
pie-Processor Systems," Computer, vol. 19, no. 3, pp. 56-67, March, 1986.

[Ku88] Kumar, V., Ramesh, K., and Rao, V. N., "Parallel Best-First Search of State-

Space Graphs: A Summary of Results," Proceedings of the National
Conference on Artificial Intelligence, AAAI-88.

[La86]

[Li86]

Lala, J. H., "A Byzantine Resilient Fault Tolerant Computer for Nuclear Power

Plant Applications," 16 th Annual International Symposium on Fault Tolerant
Computing Systems, Vienna, Austria, 1-4 July 1986.

Lin, F. C. H., Keller, R. M., "Distributed Recovery in Applicative Systems,"
Proceedings of the 1986 International Conference on Parallel Processing, pp.
405-12, i986.

[NA86] National Aeronautics and Space Administration Project Plan, "System Auton-
omy Demonstration of Thermal Management for Space Station", Ames Re-
search Center, September 1986.

-26-



[Pe84]

[Tr87]

[vc84]

Pearl, J., Heuristics: Intelligent Search Strategies for Computer Problem Solv-
ing, Reading, Massachusetts: Addison-Wesley, 1984.

Troxel, G. D., "Detection and Recovery from Deadlock in a System using Re-
mote Procedure Calls," S. B. Thesis, Massachusetts Institute of Technology,
Cambridge, MA, June 1987.

Vegdahl, S.R., "A Survey of Proposed Architectures for the Execution of
Functional Languages," IEEE Transactions on Computers, vol C-33, no. 12,
pp. 1050-71, 1984.

-27-



I. Report No. 2. Government Accession No.

NASA CR- 1819 38

4. Title and Subtitle

Investigation of the Applicability of a Functional

Programming Model to Fault-Tolerant Parallel

Processing for Knowledge-Based Systems

7. Author(s)

Richard Harper

Report Documentation Page

9. Pe_o_i_ Organization Name and AdOre_

The Charles Stark Draper Laboratory, Inc.

555 Technology Square

Cambridge, MA 02139

12. Spon_ring Agancy Name and Addm_

National Aeronautics and Space Administration

Langley Research Center

Rampton, VA 23665-5225

3. Recipient's Catalog No.

,5. Report Date

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

549-03-31-03

11. Contract or Grant t_o.

NASI-18565

IS. Supp4ementarv Notes

13. Type of Report and Peciod Covered

Contractor Report

14. Sponsoring Agency C'ode

Langley Technical Monitor: Sally C. Johnson

Final Report for Task 4

16. Abstract

In a fault-tolerant parallel computer, a functional programming model can facilitate
distributed checkpointing, error recovery, load balancing, and graceful degradation.
Such a model has been implemented on the Draper Fault-Tolerant Parallel Processor
(FTPP). When used in conjunction with the FTPP's fault detection and masking
capabilities, this implementation results in a graceful degradation of system
performance after faults. Three graceful degradation algorithms have been
Implemented and are presented. A user interface has been Implemented which
requires minimal cognitive overhead by the application programmer, masking such
complexities as the system's redundancy, distributed nature, variable complement of
processing resources, load balancing, fault occurrence and recovery. This user
interface is described and its use demonstrated. The applicability of the functional
programming style to the Activation Framework, a paradigm for intelligent systems, is
then briefly described.

17. Key Word= (Suggested by Author(s))

Parallel Processing

Fault Tolerance

Computer Architectures

Expert Systems

Knowledge-Based Systems

Ig. Secud_,Camif. l_ m_ mpon)

Unclassified

18. OiltributionSmten'Wlnt

Unclassified-Unlimited

Subject Category 62

S_ur_ Cillsif. lof11_l#)iige) 21, No. of'_u _, Price

Unclassified
Ju=|

NASA FORM 162$ OCT m


